
⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 1

⛈☂(⛈☂) Threat Modeling of
Threat Modeling #meta, V 1.1.0
Available online at https://threat-modeling.net/threat-modeling-of-threat-
modeling/

Created by Hendrik Ewerlin - https://hendrik.ewerlin.com/security 20240227

Motivation / About this document
This document threat models threat modeling. #meta

Threat modeling will more likely be a success if we tame the threats to the threat
modeling process.

Why is threat modeling so important?
Threat modeling is cruicial for building secure systems:

A system is secure, iff it is protected from danger.

So the obvious questions are: What danger / threats? What protection /
mitigations?

These questions align nicely with Questions 2 and 3 from Shostackʼs Four
Question Framework: “What can go wrong? What are we going to do about it?ˮ
Answering these four question is what a threat modeling process does.

This makes threats visible Goal 1 Clarity) and tames them Goal 2 Security).

https://threat-modeling.net/threat-modeling-of-threat-modeling/
https://threat-modeling.net/threat-modeling-of-threat-modeling/
https://hendrik.ewerlin.com/security
https://github.com/adamshostack/4QuestionFrame
https://github.com/adamshostack/4QuestionFrame
https://github.com/adamshostack/4QuestionFrame

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 2

What makes threat modeling a success?
The ultimate goal is to create a secure system. We create that system by threat
modeling and implementing mitigations. This is a security activity performed by
humans and we can investigate itʼs usability (see ISO 9241112018.

� Effectiveness: We need the complete thing. We need threat modelers to finish
the threat modeling and developers to finish mitigations. If the process gets
stuck somewhere, or the mitigations are not implemented, we end up with nice
conversations and plans, but zero improvement of the system.

� Efficiency: We want good quality and acceptable effort.

� Satisfaction: We want everybody to enjoy the activity, so they will love to do it
again.

Why threat model threat modeling?
So we need effectiveness, efficiency and satisfaction in a process with multiple
steps, different ways to do things and various people involved. Obviously, a lot of
things can go wrong. What are we going to do about it?! Hey, isnʼt that threat
modeling? 😉

Methodology

This meta threat model chooses a very simple threat modeling style and notation
with four to five levels.

- Phase of threat modeling, � for overarching aspects

🧩 Typical activity in that phase

https://www.iso.org/obp/ui/en/#iso:std:iso:9241:-11:ed-2:v1:en

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 3

📔 Threat cluster - optional

⛈ Threat when performing the activity

☂ Mitigation of that threat

There are short names and detail texts. Threats have stable numerical IDs for
referencing that follow the hierarchical structure. X.Y.Z

Whenever possible, captions use active voice and clarify performing actors as the
subject of sentences. Sometimes, “⇒ˮ denotes how causes result in
consequences and have impact.

For simplicity, mitigation texts assume that advice can reach itʼs destination and be
followed. In the real world, this means communication, persuasion and finding
better alternatives along the way.

Highlight markers - ✨ - show my personal favorites.

Incompleteness markers - ❓ - show where mitigations have not yet been
considered or documented.

💡 Inspiration

The analysis has 5 phases. Phase 0 is “How do we threat-model? .ˮ Phase 14
are the questions from Shostackʼs Four Question Framework.

The activities are taken from threat modeling approaches as seen online.

Threats were inspired from systematic analysis, own experience, online
problem reports, the Threat Modeling Manifesto and feedback. Taking part
and following the OWASP #threat-modeling Slack Channel and the Threat
Modeling Connect Community was especially helpful and inspiring. Other
helpful content is linked.

The original document was vendor-specific and then generalized and
extended to target a broader audience of “people at system vendors wanting
to succeed with their threat modeling program .ˮ

 Why add Phase 0 “How do we threat-modelˮ?

https://github.com/adamshostack/4QuestionFrame
https://www.threatmodelingmanifesto.org/
https://owasp.slack.com/archives/C1CS3C6AF
https://www.threatmodelingconnect.com/
https://www.threatmodelingconnect.com/
https://www.threatmodelingconnect.com/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 4

Threat modeling wonʼt happen by accident. Vendors must actively choose to
practice it. They need a process. Various approaches exist. There must be a
selection, adjustment for local needs and design of parts that are missing.

A threat modeling program takes this one step further. More than a process, a
program has considerations about training, education and decisions on who
threat models what and when.

How this may apply to you
Mitigations are my own suggestions. You may be concerned about other threats or
prefer other mitigations. Some aspects are controversial. Some advice wonʼt work
depending on local situations. The threat model has no likelihood considerations.
You may want to consider for yourself if a threat applies for you and if you want to
try a suggested mitigation.

Take this with a grain of salt. Get inspired. Enjoy! 🙂

If you have any feedback, please let me know. The bottom of this document has
details about the call for feedback.

System Model

Actors (with overlaps - a given person may take on one or more roles in this
list)

At the system vendor…

Managers request or grant threat modeling

Process designers define how it is done

Threat modelers threat-model

Developers implement mitigations

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 5

From remote…

AppSec / Threat Modeling community members inspire and support
with mutually enriching exchange

AppSec / Threat Modeling service providers inspire and support with
their services

World, Customers, Users benefit from clarity and a secure product

Artifacts

At the system vendor…

Threat modeling program/process documents, resources, tools and
training material empower threat modelers

Threat models capture and drive threat modeling processes and
results

Mitigation issues drive the implementation of mitigations by
developers

Product / system is shaped, secured and delivered

From remote…

AppSec / Threat Modeling resources, inspiration, tools, content and
platforms inspire, support and may be adopted

Standards and regulations apply and inform

Phases and activities

See Diagram

See Threats and Mitigations chapter structure

Diagram

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 6

AppSec / TM
Community

System vendor

Threat Modeling

Community
members

Phase 0:
How do we

threat-model?
Phase 1:

What are we
working on?

Phase 2:
What can go wrong?

Phase 3:
What are we going to

do about it?

Phase 4:
Did we do a

good enough job?
0.1: No TM
(motivation)

Proceess
designers

Threat
modelers

Developers

Threat
models

Mitigation
issues

Product /
system

0.2: Want TM process
/ program

0.3: Design TM
process

0.4: Design TM
program

0.5: Train and launch
TM Program

1.1 Catch up on TM
for existing products

1.2 Threat model new
developments

1.3 Scope and
represent system

2.1 Discover threats

2.2 Use tool-aided
threat discovery

3.1 Assess risk

3.2 Plan mitigations

3.3 Implement
mitigations

4.1 Review TMs and
each threat

4.2 Track what is
actually tamed

4.3 Judge remaining
risk

4.4 Improve the
process

Managers

AppSec / TM
resources,

inspiration, tools,
content, platforms

TM program/
process docs,

resources, tools
and training

PD-TM communication
TM-Dev communication

Vendor-Community
communication

External AppSec / TM Service Providers

Security
consultants

Threat
modeling
trainers

external
threat

modelers

Penetration
testers

Inter-TM communication

World, Customers, Users

Vendor-SP
communication

Standards,
regulations

Tool
vendors

Content
creators

Threats and Mitigations

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 7

 “How do we threat-model?ˮ Phase

 🧩 Develop software without threat modeling (May serve as
motivation) [0.1]

ℹ Is this fear mongering?

The ultimate goal of security ambitions is to make actual damage less likely
and less harmful. So, naturally, we also have to talk about insecurity. The
focus here is the transformation and goal we are trying to achieve - from
blindness to more clarity, from insecurity to more security. We promote the
umbrella, not the storm.

ℹ Is this over-simplified?

The actual state of vendors and products is highly complex, ambivalent,
depending on various aspects. This is also why we need analysis. And why
there is room for improvement.

✨⛈ 0.1.1 Blindness

Product was designed without threat modeling. There is no way to
answer if it is secure (= protected from danger). Gut feeling / known
security issues / previous incidents reported / last penetration test report
is far inferior than showing a completed and up-to-date threat model with
mitigations implemented. Knowledge about insecurity is often distributed
and implicit. Depending on who is asked, there may be contradicting
assessments of the current state.

☂ Threat model and know the security of your system.
Goal 1 Clarity - from above)

✨⛈ 0.1.2 Insecurity

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 8

Product was designed without threat modeling. The product is more
likely to be insecure. It is accidentally secure, at best. Developers had the
right intuition here and there and implemented proper mitigation of threats.
In other cases, this was probably forgotten. This results in systems with
“rocket-proof doorsˮ (mitigation overkill, see below) and “open windowsˮ
(mitigation underkill, see below).

☂ Threat model, implement mitigations and secure your system.
Goal 2 Security - from above)

⛈ 0.1.3 Actual Damage

The more insecure a product is, the more likely is an actual damage or
incident.

☂ Threat model, reduce insecurity and make actual damage less likely
and less harmful.

⛈ 0.1.4 Late Threat Modeling

Threat modeling is late Vendors face the dilemma of choosing between
ongoing blindness and insecurity VS threat modeling a “giantˮ with the
consequences associated (see below).

☂ There are two best times to threat model: at design time, and right now.

 🧩 Want threat modeling process / program [0.2]

❓⛈ 0.2.1a] Weak security culture / “I donʼt care about securityˮ

Managers or developers donʼt value security very much. It is therefore
difficult to convince them of a methodology that promotes it.

…?

⛈ 0.2.1b] Unknown or unwanted threat modeling

Managers or developers donʼt know threat modeling exists / donʼt demand
or support threat modeling / donʼt see that they totally need it

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 9

☂ Threat modeling benefits from ambassadors at the vendor who see itʼs
value and promote it.

☂ Use convincing material provided by the threat modeling community. In
this document, for instance, see Why is threat modeling so important? and
Develop software without threat modeling.

☂ Some experts already highly recommend threat modeling:

OWASP SAMM has Threat Assessment (owaspsamm.org) as a crucial
part in the design phase of secure software development and defines
three maturity levels.

OWASP Top 102021 has A04 Insecure Design OWASP Top 102021
on rank 4 of their most important security problems and highlights the
importance of threat modeling.

☂ For some countries and domains, threat modeling is required.

✨⛈ 0.2.2 “Resistance is futileˮ misconception

Managers and developers sometimes think that defense is futile anyway:
According to them, hackers, service providers, governments and future
super-computers can easily intrude and steal data. Such a mindset
results in giving up too early and not properly defending.

☂ They need security education. State-of-the-art mitigation is extremely
powerful and can resist even powerful attacks. It can sometimes achieve
levels of security that go far beyond what people intuitively think is
possible:

Practically unbreakable encryption exists

Post-quantum cryptography is currently being standardized

Usable secure authentication exists

Services with well-crafted end-to-end encryption can provide
awesome utility without server intruders or platform hosts being able
to access or modify content.

Signatures and blockchain technology can make it impossible to
tamper with data without being noticed

https://owaspsamm.org/
https://owaspsamm.org/model/design/threat-assessment/
https://owasp.org/Top10/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://www.youtube.com/watch?v=w8KY0vxI8kA

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 10

Confidential computing enables confidential execution of arbitrary
programs in untrusted environments

Secure build and deployment chains can to some extend resist rogue
developers and admins and supply-chain attacks

☂ Embrace cryptography and advanced mitigations and learn what is
possible.

☂ Stop building systems with all-mighty admins and “server intruder ⇒
game overˮ properties.

☂ Hire application security experts.

❓⛈ 0.2.3 “Wonʼt happen to usˮ / “Weʼre invulnerableˮ misconception

Managers or developers already feel like they are in a good state, nobody
would try to attack them and current practices suffice.

…?

✨⛈ 0.2.4 Undefined desired level of security

The organization lacks specifications or service level agreements SLAs)
how much security is really needed and aimed for. As a result, opposing
forces are fighting it out on a daily basis. The organization wastes a lot of
effort negotiating. People get frustrated. The level of security depends on
who can assert themselves and is kind of random. It can depend to a large
extent on the composition of the people in teams and who is in charge of
prioritizing.

Tanya Jancaʼs DevSecOps Worst Practices talk answers a question about
appropriate level of security and also draws a realistic picture about how
people are persuading all the time when no standards are set.

☂ Managers must clearly set expectations how much security is needed.
The vendorʼs domain, asset considerations, product strategy, current state
of security and legal requirements answers questions about what is
appropriate.

☂ If managers donʼt set expectations, process designers should promote
and demand it.

https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=3029s
https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=3029s
https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=3029s
https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=3029s
https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=3029s

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 11

☂ These expectations must be well communicated and accepted. Even if
it will always be the case that security is more or less important to
particular people, it must be clear what the organization as a whole is
striving for.

☂ If a certain level of security is required, processes must account for
that and demand it.

☂ Resource allocation is essential.

 🧩 Design Threat Modeling process (how) [0.3]

✨⛈ 0.3.1 No process available

No actionable process (let alone: program) is available, so no-one threat-
models.

☂ Start with some approach from the internet that is actionable and
produces some results. Focus on learning and satisfaction first (the
experiment helps learn, people enjoy it and get excited), effectiveness
second (the process finishes with some result), efficiency third (the quality
is good and it doesnʼt produce too much effort).

☂ Learn what works for you. Learn what doesnʼt work. Integrate and
improve.

⛈ 0.3.2 Perfect process trap

Process Designers take forever to design a very sophisticated threat
modeling process / program and donʼt get this whole thing started.

☂ Follow the Threat Assessment (owaspsamm.org) maturity levels from
OWASP SAMM as a plan for growth. Donʼt try to jump from maturity level
zero to maturity level three.

☂ Before designing a whole threat modeling program, experiment and try
single/different threat modeling approaches

☂ Embrace the idea behind the quote “Version one is better than version
none ,ˮ apply the mindset you know from agile software development, start

https://owaspsamm.org/model/design/threat-assessment/
https://owaspsamm.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 12

with a minimal viable process, improve. You may even apply the ideas of
Semantic Versioning 2.0.0 to your process.

⛈ 0.3.3 No driver

Company lacks threat modeling / application security experts who can be
the process designers

☂ Hire application security experts, get consulting or follow out-of-the-
box advice from the threat modeling community. Whatever you do, make
sure there are drivers who create an actionable threat modeling process.

✨⛈ 0.3.4 Information overkill

Process Designers are overwhelmed by various approaches, tools and
information that exists out there, while trying to learn Threat Modeling

☂ Refer to hard threat discovery and hard mitigation planning mitigation
for some hints to approachable material. (see below)

☂ Start simple.

☂ The Threat Modeling community can support this by creating good
material for starters.

☂ The Threat Modeling community can support this by welcoming two
types of learners:

Some want something simple that is approachable and just works,
because they want the results in the first place. Those can use
prompts, threat modeling games, cue cards or very simple advice.

Some want to dive deep and become expert threat modelers. Those
can probably handle huge enumerations and long link lists with rich
material.

⛈ 0.3.5 Awesome tool trap

Process Designers get lost thinking about tooling

☂ Donʼt use sophisticated tooling at first.

☂ Simple approach: Start with threat modeling that “hacks the
whiteboardˮ and has mitigation issues as itʼs outcome.

https://semver.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 13

☂ Use the same tools that are used for other technical documents. Use
some diagramming software that is available - draw.io is a good one.
Create a template how to denote threats and mitigations.

☂ Test and adopt tooling as you proceed.

⛈ 0.3.6 Non-actionable process

Process Designers design a process that is not actionable and executable

☂ Have step by step intructions or checklists that guide threat modelers
when threat modeling. Don't just describe outcomes, because this results
in threat modelers doing process design work at times when they should
better be threat modeling.

☂ Reflect on the process Improve the process with lessons learned, see
below)

 🧩 Design Threat Modeling program (who / when / what) [0.4]

🏗 TODO this section is under construction and has some ideas. Threat
mitigations in the sections “Catch up on threat models for existing products ,ˮ
“Threat model new developmentsˮ and other sections reveal several topics that
should better be considered by process designers up-front.

📔 Who

❓⛈ 0.4.1 Who threat models?

Process Designers fail to decide who threat models. Thereʼs unclear
responsibilities and no action.

❓⛈ 0.4.2 Few threat modelers

Process Designers let too few people threat-model. This results in hero
threat modeler anti pattern.

❓⛈ 0.4.3 Everyone threat modeler

https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 14

Process Designers let everyone threat-model. Some people donʼt want
to. Some people simply canʼt. They need a lot of training or deliver bad
results.

📔 Catch up plan

❓⛈ 0.4.4 Lack of catch up plan

Program design lacks a strategy how to catch up on threat modeling for
existing products.

📔 Threat modeling / SDLC integration for new developments

❓⛈ 0.4.5 Bad process integration for new developments

Process designers donʼt integrate Threat Modeling in existing development
life cycles. Threat Modeling is not performed due to lack of triggers.

…?

❓⛈ 0.4.6 Bad process integration for new products

Process designers fail to specify how Threat Modeling accompanies the
development of new products.

…?

📔 Threat Model Confidentiality

❓⛈ 0.4.? Threat Model Leak

Process Designers (or threat modelers) fail to restrict access to threat
models. A threat model in the wrong hands can serve as an attack plan,
especially when mitigations are not yet found or implemented.

 🧩 Train and Launch Threat Modeling program [0.5]

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 15

⛈ 0.5.1 Lack of training

Too little training leaves threat modelers uncertain what to do.

☂ Introduce mandatory training for threat modelers. Process designers,
experienced threat modelers or consultants can be the trainers.

⛈ 0.5.2 Too theoretical training

A very theoretical training fails to convey practical skills.

☂ Include practical threat modeling exercises in the training.

☂ Consider starting with a real world scenario, so that people can relate.

☂ Design a small toy scenario with high impact threats that match your
domain, so that people are engaged and see why threat modeling helps.

☂ Follow Chris Romeoʼs rule: Heʼs not allowed to talk about threat
modeling for more than 30 minutes until people have to threat model. 😉 If
you break that rule, know why.

⛈ 0.5.3 Bad plan or communication

Bad communication when to start, how to start and with which activities to
start results in no action.

☂ Create a launch plan with deciders. Prioritize work. Catch up on threat
models for existing products, see below) (Threat model new
developments, see below) Communicate.

⛈ 0.5.4 No obligation or willingness

Threat modelers do not threat-model because they are not obliged to do
so and are not motivated by their own initiative.

☂ Threat modeling must be made mandatory. Convince managers if
needed.

☂ Ignite the passion for threat modeling with good motivation (see above)

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 16

 “What are we working on?ˮ Phase

 🧩 Catch up on threat models for existing products [1.1]

✨⛈ 1.1.1 Threat modeling a “giantˮ

A huge product without an existing threat model or with big gaps in threat
modeling coverage leaves threat modelers overwhelmed, not knowing
where to start. They feel like it will take forever to threat-model the system
and implement mitigations. Itʼs like “trying to boil an ocean .ˮ

☂ Involve a powerful set of well-trained people.

☂ Have management support. If needed, advertise the benefits of threat
modeling the “giantˮ (see above) and the dangers of not catching up (see
below).

☂ Appreciate what already exists. You are not starting from scratch.
Import existing mitigations into your analysis and see where they help.

☂ Use encouraging language that supports the attitude that cutting and
threat modeling the “giantˮ is valuable and feasible, step by step. “Giantˮ
itself is already a word that supports the impression of overload. Even
worse terms exist out there, like “big ball of mud .ˮ Listen consciously and
think about what words convey. Get people excited about a brighter future.

☂ Address hearts and minds. In your communication, be aware that this
topic has a strong emotional component to it: It is very much about fear,
overload, uncertainty, shrinking back, not knowing where to start and
escaping into “One fine day → big rewrite / new product → awesome
securityˮ fantasies.

https://www.youtube.com/watch?v=QlLbBOgclp0&t=3001s

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 17

☂ Divide and conquer: Decompose and cut the “giantˮ into manageable
pieces.

☂ Choose a level of abstraction that assures that the activity terminates
in reasonable time and still produces valuable results. Adapt the level of
abstraction as is needed for good results.

☂ Work with layers Some threats can be found and tamed at a high level
of abstraction. For some, we can zoom in and dive deeper.

☂ Prioritize and apply project management.

☂ Quick wins: Start with topics from which you can hope for quick
success (ˮlow-hanging fruitsˮ).

☂ Secure subset: Determine a subset of the “giantˮ that has the most
valuable features. You may want to threat-model this subset at first, so
that you can offer a slightly smaller but still useful and, above all, secure
“giant .ˮ

☂ Discontinue parts of the product that are probably insecure and not
worth the effort of fixing given their utility.

☂ Complete the pieces. Avoid parallel paralysis (see below).

☂ Start today with techniques like Incremental Threat Modeling or
Continuous Threat Modeling (see below, threat model new developments).
If relevant work items are already known, mix clarification and
implementation efforts. Donʼt wait for a big analysis to someday reveal all
the priorities.

☂ Make sure your threat modeling is effective, efficient and satisfying.
(see various other threat mitigations)

⛈ 1.1.2 Not catching up

The vendor does not spawn threat modeling processes for legacy product
parts without a threat model This results in ongoing blindness and
insecurity (see above).

☂ Consider catching up. Know the consequences of not catching up
(ongoing blindness and insecurity, see above)… Follow a plan (threat

https://www.youtube.com/watch?v=QlLbBOgclp0&t=3001s
https://github.com/Autodesk/continuous-threat-modeling

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 18

modeling a “giant ,ˮ see above), to make sure the activity is a success and
the effort is not too high.

📔 Blockers

✨⛈ 1.1.3 Lost momentum

Threat modeling activities fall asleep. The process gets stuck and
doesnʼt produce improvements to the system.

☂ Sometimes it is as simple as this: Wake it up again! Invite to the next
threat modeling session.

☂ Otherwise reveal the true problem and root cause: Often times it has to
do with priorities, how busy people are, how much value they see in threat
modeling, the contribution of this particular threat modeling activity,
management support, or threat modeling that is blocked, inefficient or
frustrating. Fix that. (see various suggestions in this document)

☂ Or accept that something else is more important right now, if that is the
case. Maybe promote later.

⛈ 1.1.4 Parallel paralysis

Threat modelers try to threat model everything all at once. This results
in a lot of incomplete parallel activities that are stuck somewhere in the
middle.

☂ Rather complete small and manageable threat model parts with all
phases, including implementation, then move on to another part.

☂ Choose wisely which teams threat model and how to schedule these
teams on threat model parts.

⛈ 1.1.5 Overwhelmed teams

In a comprehensive threat modeling project, the effort is heavily
concentrated on certain teams. Meanwhile, other teams canʼt contribute
much.

☂ Relieve overwhelmed teams wherever possible.

☂ Request that managers boost overwhelmed teams.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 19

☂ Question if threat modeling teams must align with developer teams.

☂ Plan and schedule the activities for a realistic time frame.

⛈ 1.1.6 Unclear Priorities

Threat modelers start threat modeling activities for parts of the systems
that are not that important. Meanwhile, nobody starts activities for
important parts of the system.

☂ There should be some sort of coordination which threat modeling
activities exist. Process designers should clarify what/who spawns a new
threat modeling process and when.

 🧩 Threat model new developments [1.2]

✨⛈ 1.2.1 Outdated threat models

Developers donʼt update threat models. Threat models get outdated and
fail to keep up with new developments. New developments may be
insecure. We donʼt know (blindness and insecurity, see above)

☂ Follow the continuous threat modeling mantra: “Threat model every
story.ˮ For each story, at least consider if it needs new threats and
mitigations. If so, update threat models. Integrate that into your process.

☂ Decide if you want to have deferred threat modeling and risk threat
model later & (later=never) anti-pattern (see below) or start right away.

☂ Like suggested in continuous threat modeling, have baseline threat
models available, where threats and mitigations for new stories can easily
be added, at best without having to lazily create whole new threat models.

⛈ 1.2.2 Deferred threat modeling / Threat model later & “later=neverˮ anti-
pattern

When implementing a new feature, developers plan to update the threat
model later, then never do it.

https://github.com/Autodesk/continuous-threat-modeling
https://github.com/Autodesk/continuous-threat-modeling

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 20

☂ Tie threat modeling of changes to the development of enhancements,
for instance with a definition of ready / definition of done checkpoint.

☂ The real problem here is not that something is scheduled for later. The
problem is that the activity scheduled for later is never done. You may
want to fix that instead.

⛈ 1.2.3 No threat modeling for new projects

Developers create new projects without threat modeling. Thereʼs
blindness and insecurity problems (see above). As the project grows,
threat modelers face the problem of threat modeling a “giantˮ (see above).

☂ When a working process is available and people are educated, use
your chance and apply threat modeling early in new projects, so that these
projects will be secure by design. ✨ Changes in early designs are cheap
and nothing needs repair.

☂ Have standards that require threat modeling for new projects.

✨⛈ 1.2.4 Mitigation debt / Security later & “later=neverˮ anti-pattern

A new feature is developed, threat model updated, mitigation planned and
not yet implemented. The feature is merged. The undone mitigation
creates technical debt. There is the risk of undone mitigation (see below).

☂ Make sure that you can deliver the mitigation together with the new
development. Otherwise, donʼt merge. Follow the mantra: “Itʼs not done
until itʼs secure .ˮ

☂ Or, again, fix your “later=neverˮ problems.

 🧩 Scope and represent the system [1.3]

Threat modelers scope the activity and choose a system representation.
Diagrams are often used.

⛈ 1.3.1 Too abstract

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 21

Degree of abstraction is too high. Thereʼs too few details. Threat
discovery doesnʼt discover meaningful threats.

☂ Check system representations if something is too abstract. If so, zoom
in.

☂ A usual suspect here is having data flows with unknown / implicit
power. For each interface, describe in an adequate level of abstraction
what it can do.

✨⛈ 1.3.2 Too detailed

Degree of abstraction is too low. Thereʼs too much details. Threat
discovery gets lost and takes forever.

☂ Check system representations if something is too detailed. If so, zoom
out.

☂ Donʼt try to model “the whole system .ˮ “The whole systemˮ is in the
source code. We need to zoom out, simplify, condense.

☂ Consider splitting into multiple representations or threat modeling
activities.

⛈ 1.3.3 System representation miss

Important aspects of the system are forgotten, not modeled and therefore
not threat-modeled.

☂ Let threat modelers agree in scope beforehand, and only finish the
system modeling phase when everyone can look at the diagram/model
and agree that yes, that is the system they are modeling, in the right scope

⛈ 1.3.4 System/Representation mismatch; Garbage in Garbage out

The system representation is too far away from the actual system
Threat discovery and mitigation planning lack reality respect and produce
bad results.

☂ No garbage out No garbage in. Make sure your system
representation is adequate and well-informed by people who know the
system.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 22

 “What can go wrong?ˮ Phase

 🧩 Discover threats [2.1]

📔 Blindness and threat discovery

✨⛈ 2.1.1 Blind spot

Threat modelers miss a crucial threat.

☂ You can never be sure that you see everything. This is because of the
asymmetry in security: If being secure is being protected from all danger
(∀), then being insecure is not being protected from some/any danger
(∃). Perfect security is an ideal goal, but practically unachievable. Donʼt
get obsessed about blind spots. Aim to learn and improve and get better
over time. Reveal blind areas. This will significantly improve the process
and the security of your system!

☂ Create a positive mindset about threat discovery. If you were not threat
modeling, you would find nothing (blindness, see above). So everything
you reveal is a win.

☂ Donʼt let the two things mentioned above deter you from improving. 😉

☂ More than thinking about blind spots (which you canʼt know), try to
reveal blind areas.

✨⛈ 2.1.2 Blind area

Threat modelers miss a whole class of threats.

☂ The Threat Modeling Manifesto names patterns, all of which improve
threat modeling practices and reduce blindness: “Systematic approach,
informed creativity, varied viewpoints, useful toolkit, theory into practiceˮ

☂ Some usual suspects for blind areas:

https://www.threatmodelingmanifesto.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 23

Basic Cyber Security and machines where things are running: Threat
modelers sometimes focus on their application only. Can a script
kiddie intrude the server with standard tools, just because no one
thought about isolation, hardening and making a trust zone from a
diagram real?

Physical security

Build and deployment

Insider threats

Human aspects

Social engineering

Mitigation bypasses: Reasons why we introduce Least Privilege /
Defense in Depth and think about Game Over Scenarios… What if an
attacker overcomes a mitigation? Is that a Game Over Scenario?

…

I canʼt tell. I have blind areas about your blind areas. 😉]

☂ Avoid system representation miss (see above).

✨⛈ 2.1.3 Hard threat discovery

Threat modelers have a hard time to come up with threats. Especially
newbies are overwhelmed.

☂ Let threat modelers threat model. They grow with experience. Establish
a culture that supports learning and improvement.

☂ Encourage by conveying the message that everyone can to some
extend threat-model intuitively. Convey the image of the “threat modeling
muscleˮ that will be strengthened as we proceed and repeat the exercise.

☂ Know that your first threat models will suck. 😉 Permission to Suck
(kadavy.net) Thatʼs okay. We can revisit and improve later. Getting started
with room for improvement in quality is still far better than not threat
modeling.

☂ Bundle experiences threat modelers with newbies. Let newbies learn
from the experienced threat modeler contributions. Let experienced threat

https://kadavy.net/blog/posts/permission-to-suck/
https://kadavy.net/blog/posts/permission-to-suck/
https://kadavy.net/blog/posts/permission-to-suck/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 24

modelers encourage and open the room for newbie contributions.

☂ Offer help and support where appropriate and requested.

☂ Provide simple approachable material for starters. Examples:

4 Question Framework

Lightweight methods and prompts, as presented in Shostack +
Associates Shostack Friends Blog Fast, Cheap Good
Whitepaper

STRIDE

Cue cards Example from ThoughtWorks)

Threat Modeling card games Elevation of Privilege, LINDDUN GO, …)

MITRE CWE Top 25

OWASP Top 10

Continuous Threat Modeling, especially with itʼs IFTTT ˮif this than
thatˮ) approach to threat modeling new developments

Crypto education from a “Why would I use Xˮ perspective

…

☂ Provide advanced and rich material for people who want to dive deep.
Examples:

CWE

ASVS

ATT&CK

…

☂ Have conceptual training.

☂ Have practical training that shows the attacker & defender perspective

☂ Consider using tool- or AI-aided threat discovery

☂ Request help from experienced threat modelers or consultants.

https://shostack.org/blog/fast-cheap-good/
https://shostack.org/blog/fast-cheap-good/
https://shostack.org/blog/fast-cheap-good/
https://shostack.org/blog/fast-cheap-good/
https://shostack.org/blog/fast-cheap-good/
https://thoughtworksinc.github.io/sensible-security-conversations/materials/Sensible_Agile_Threat_Modelling_Cards.pdf

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 25

📔 Blockers

✨⛈ 2.1.4 Stuck in threat discovery / “admiration for the problemˮ

The process gets stuck in threat discovery and does not continue with
mitigation planning.

☂ Time-box activities.

☂ When your threat discovery takes too long, consider zooming out and
take a higher level of abstraction. Or cut the activity into multiple parts.

☂ Donʼt identify all threats first, then later think about mitigation, when
you observe that your threat discovery takes long. Start mitigating the
threats you already discovered. Then move on with more threat discovery.

☂ Reflect and be conscious about what you do.

⛈ 2.1.5 Never-ending threat discovery

Threat modelers donʼt know when they are done.

☂ Use a structured approach that has a defined end. STRIDE-per-Element
is one example

☂ When an activity is open-ended, time-box or define enough.

☂ Make sure you donʼt get stuck (stuck, see above)

📔 Relevance and focus

⛈ 2.1.6 Irrelevant threats

The threat model gets diluted with irrelevant threats.

☂ If you observe that you discover a sequence of irrelevant threats,
change your focus and move on to a more valuable topic.

☂ Focus on severe threats. You can find some of these by focusing on
high impact (ˮWhat would be the worst thing that could happen?ˮ / “How
does this super-secret thing move through the system?ˮ) or high likelihood
(ˮWhat are the things that everyone can easily do?ˮ).

☂ Adapt threats to the expected level of the average attacker

https://www.threatmodelingmanifesto.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 26

☂ Choose wisely whether you note or discard irrelevant threats. Noting
them has some value of documenting that you have seen them but
considered them irrelevant and helps avoid rewind (rewind, see below)

✨⛈ 2.1.7 Loss of big picture

The threat model is crowded with lots of threats. Threat modelers lose the
big picture, summary or information which threats are important. They still
canʼt tell in a compact manner if the system is secure. What are the key
threats and mitigations?

☂ Avoid irrelevance (see above)

☂ Order threats, tag/mark/highlight important threats

☂ Summarize: Cluster threats, end sessions with a summary of lessons
learned, …

⛈ 2.1.8 Lack of focus

The threat discovery lacks focus and other threats pop up all the time.

☂ Consider reminding threat modelers to focus and follow a structured
approach.

☂ If the threat that pops up is important but not related to the current
topic, at least take a note and make sure it is not lost. You can discuss and
refine the threat later.

⛈ 2.1.9 Long excursions

Threat modelers get lost in long excursions about “Is this even possible? .ˮ
They investigate, look at code, try. While this is sometimes fun and creates
bitter sweet threat modeling success moments (ˮThis actually works!ˮ), it
distracts from threat discovery.

☂ Be conscious about what temptations you follow and when itʼs better to
schedule such an investigation for later.

☂ Sometimes, itʼs cheaper to just assume that an exploit is possible.

☂ It is a good practice to not discard threats with “But this wonʼt work,
because […]ˮ - rather document the threat and why it wonʼt work.

⛈ 2.1.10 Rewind

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 27

Irrelevant threats pop up again and again in the discussion.

☂ Document these with “accepted / no actionˮ and a comment on why.
Refer to the note when someone rewinds.

📔 STRIDE (assuming it is used)

⛈ 2.1.11 Mad STRIDE-order

Threat modelers go nuts trying to apply STRIDE in the STRIDE order.

☂ Reorder STRIDE to something that makes more sense, like ITDSER /
SEITDR, and iterate.

⛈ 2.1.11b] Categorization quibbles

Threat modelers spend a lot of time “correctlyˮ classifying threats
according to a scheme, like STRIDE.

☂ Threat modelers should be aware that the main purpose of such
categories is to structure threat discovery and provide a sense of
completeness through a structured approach. For a threat at hand, the
category is not very important.

📔 Conflicting objectives

⛈ 2.1.12 Hiding the unpleasant

Threat modelers hide unpleasant threats that come to mind, because they
donʼt want to deal with the effort of mitigation

☂ Relax. Have a positive view of people and assume that everyone wants
to do their best work.

☂ Design a process and culture that always favors transparent knowledge
and honesty over lying, hiding and faking.

☂ Make sure your process does not put too much pressure on threat
modelers and developers.

☂ Provide solutions for unfeasible / high effort mitigations (see below)
and undone mitigation threats (see below).

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 28

 🧩 Use tool-aided threat discovery [2.2]
❓⛈ 2.2.1 No-tool miss

Manual-only threat discovery misses valuable threats that a tool-aided
threat discovery could have found.

…?

❓⛈ 2.2.2 No-AI miss

Not using AI misses threats that AI-aided threat discovery could have
found.

…?

❓⛈ 2.2.2b] AI hallucinated threats

AI aided threat discovery hallucinates threats that are in fact irrelevant.

…?

❓⛈ 2.2.3 Ignored tool

A tool is available, but threat modelers / developers donʼt use it properly or
ignore itʼs outcomes.

…?

❓⛈ 2.2.4 Savior tool misconception

Threat modelers have the misconception that a tool-aided threat discovery
is complete and has all the answers.

…?

❓⛈ 2.2.5 Drowning in false positives

Tool-aided threat discovery creates a lot of false positives. False
positive fatigue sets in and frustrates threat modelers.

…?

❓⛈ 2.2.6 False false positives

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 29

Threat modelers reject an issue as a false positive, when it really is a
problem. Bad accept.

…?

❓⛈ 2.2.7 Tool leak / AI leak

Use of Tool/AI leaks confidential threat modeling information.

…?

❓⛈ 2.2.8 Tool dictated process

A used tool makes strong specifications for the process and does not
really fit the agreed process.

☂ A tool is a helper and shouldn't be telling organizations how they should
threat model. The tool needs to adapt to the vendor, not the other way
around.

…?

 “What are we going to do about it?ˮ Phase

 🧩 Assess risk / Decide which threats need mitigations [3.1]
Threat modelers judge which threats are worth addressing. This can be done with
a likelihood / impact classification scheme or threat ranking. It results in some
suggested action, like MUST FIX / SHOULD FIX / COULD FIX / NO NEED TO FIX.

📔 Threats based on risk assessment approach

⛈ 3.1.1 No risk assessment

Threat modelers mitigate everything. This results in a lot of mitigation
effort and all-critical bias (see below).

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 30

☂ Focus on severe threats. Either have severity in mind, so that
irrelevance (see above) will be avoided. Or apply risk assessment or threat
ranking to find out essential threats.

✨⛈ 3.1.2 Arbitrary risk assessment

The risk assessment is fuzzy and too much dependent on who assesses
the risk and if it is a sunny or cloudy day. Decisions can always be
questioned, are not reproducible or donʼt make sense. It is kind of random
which threats are addressed.

☂ Introduce a risk assessment methodology with good and consistent
judgement that does not suffer from All-acceptable bias or All-critical bias
or Insane and untrusted rating scheme (see below).

⛈ 3.1.3 Reinventing the risk assessment wheel

Process designers create far too clever rating scheme and donʼt make use
of existing offers Design of the risk assessment scheme blocks the
threat modeling efforts. The custom scheme may have All-acceptable
bias, All-criticial bias or suffer from Insane and untrusted rating scheme
(see below).

☂ Get inspiration from existing rating schemes. Reuse where possible.

📔 Under-/over- estimating risk

✨⛈ 3.1.4 Single underestimated risk Bad accept

A high risk is judged too low. Threat modelers donʼt mitigate the threat.
The system remains vulnerable and threat modelers have a false sense of
security. Mitigation underkill, see below)

☂ Document reasons for accepts. Review accepts. Check if they were
justified.

☂ Bad Accept is worse than addressing a risk that doesn't necessarily
need to be addressed. In your rating scheme, introduce a slight tendency
towards addressing risks.

☂ See mitigation underkill mitigation (see below).

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 31

⛈ 3.1.5 All-acceptable bias

The rating scheme judges far too many threats acceptable. This results
in a lot of bad accepts and an insecure system. Threat modelers notice
that the scheme rates all-acceptable. They no longer take the results
seriously. Insane and untrusted rating scheme, see below)

☂ Check the rating scheme for sanity. Insane and untrusted rating
scheme, see below)

⛈ 3.1.6 Single overestimated risk

A low risk is judged too high. This produces mitigations and
implementation effort that is not really needed. Mitigation overkill, see
below)

☂ Single overestimated risks are probably not that severe. Vendors may
be able to handle some useless effort. Users wonʼt complain about too
secure systems, unless there is other problems like usability degradation
(see below). Vendors should not allow this to become a structural problem:
avoid all-critical bias (see below).

☂ See mitigation overkill mitigation (see below).

✨⛈ 3.1.7 All-critical bias

The scheme judges far too many threats critical. Mitigation discovery
lacks focus and produces all kinds of mitigations, even for irrelevant
threats. Developers have huge implementation effort. People question the
sanity of the risk assessment scheme, the threat modeling process or
even the benefit of threat modeling. Threat modelers notice that the
scheme rates all-critical. They no longer take the results seriously. Insane
and untrusted rating scheme, see below)

☂ Check the rating scheme for sanity. Insane and untrusted rating
scheme, see below)

⛈ 3.1.8 Insane and untrusted rating scheme

The scheme creates bad risk assessments. Threat modelers notice that
the scheme rates insane. They no longer take the results seriously. Every

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 32

risk assessment is subject to discussion. It is not clear how threats are
actually judged and if they require mitigation.

☂ Educate threat modelers to not blindly trust the rating scheme, but also
check for themselves if risk assessments are sane.

☂ Allow for feedback. If someone observes that the rating scheme
creates insane judgements, document these cases and design something
better.

☂ Have an “ejection seatˮ exception in your process, that conscious
human judgement can always overrule an insane rating scheme decision.
Document reasons.

☂ Check the rating scheme for sanity. Validate both properties: that
severe threats are rated severe (no All-acceptable bias, see above) and
unimportant threats are rated no need to fix (no All-critical bias, see
above).

☂ In cases where the rating scheme is seriously broken and unusable,
stop using it. Fallback to threat modelersʼ judgement until a better rating
scheme is available.

☂ Embrace the idea of incremental improvement. Apply Semantic
Versioning 2.0.0 | Semantic Versioning (semver.org). Have conventions
which risk assessments will be repeated when the rating scheme needed
an update. Document which version of the rating scheme was used for risk
assessments.

📔 Blockers in risk assessment

⛈ 3.1.9 Too fine-grained risk assessment scheme

The scheme is too fine-grained. Threat modelers have pointless
discussions on what exactly to select (ˮIs this a HIGH or VERY HIGH
impact?ˮ). Their choices donʼt make a difference in the suggested action.

☂ Use the minimum degree of detail needed for sane judgement.

⛈ 3.1.10 Never-ending risk assessment

https://semver.org/
https://semver.org/
https://semver.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 33

The risk assessment takes too long. Threat modelers get stuck
assessing risks for a lot of threats.

☂ Design the risk assessment scheme to be fast, approachable and not
too complicated.

☂ Provide threat modelers with “paved roadsˮ so that some discussions
on risk assessment have simply already taken place.

 🧩 Plan mitigations [3.2]

Threat modelers plan countermeasures to address the relevant threats. They aim
for a set of mitigations that sufficiently tames each relevant threat and is feasible.

📔 Feasibility

✨⛈ 3.2.1 Unfeasible / high effort mitigations

The entirety of mitigations planned creates an implementation effort that is
too high and overwhelms the capacities of developers given their
priorities. Developers get busy. Undone mitigation threats apply (see
below). Other value canʼt be provided.

☂ Reuse mitigations.

☂ Aim for mitigations that can tame a lot of threats.

☂ Consider the implementation effort of mitigations when choosing
between alternatives. Favor mitigations that are effective and cheap.

☂ Plan mitigations based on information what is feasible. Involve
developers in the process and let them participate in threat modeling.

☂ Threat modeling that is well-informed what is feasible and also
understands risk can realistically put all options on the table and
consciously decide: Avoid risk, accept risk or choose between different

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 34

mitigation alternatives based on effort and protection expected and
needed.

☂ Avoid mitigation overkill (see below)

⛈ 3.2.1b] Mitigation lost in (risk → priority) translation

Threat modelers often judge risk: ˮcritical issue MUSTFIX .ˮ Developers
often work guided by priority: ˮwhatʼs next? .ˮ They can only handle a
certain amount of parallel work in progress, deliver a certain amount of
work in a given time and need to integrate all kinds of requests. If threat
modeling does not translate between risk and priority, threat modelers
plan unfeasible mitigations.

☂ Process designers and threat modelers must understand both
concerns, integrate and translate between the two ways of working.

☂ Developers should provide threat modelers with a certain capacity to
satisfy MUSTFIX for very critical issues.

☂ Threat modelers must be aware that they cannot demand infinite
MUSTFIX (unfeasible / high effort mitigations, see above)

☂ Threat modelers should not forget about the incremental nature of
system development.

☂ Threat modeling should also be robust to changes in priority and
developers not being able to deliver what was planned (undone mitigation,
see below).

☂ Development may be able to follow “Itʼs not done until itʼs secureˮ for
new developments.

📔 Too weak or too strong mitigations

✨⛈ 3.2.2 Mitigation overkill / “mit Kanonen auf Spatzen schießenˮ

Talk is cheap. Threat modelers can easily add strong and fancy mitigation.
 This results in huge implementation effort.

☂ When suggesting and selecting mitigations, keep in mind that they will
have to be implemented for real. 😉

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 35

☂ Reach for “good enoughˮ security in both senses of the word: sufficient
and not overkill.

☂ Avoid undefined desired level of security (see above)

☂ Avoid All-critical bias in your risk rating (see above), because it will
systematically produce mitigation overkill.

✨⛈ 3.2.3 Mitigation underkill

A suggested set of mitigations does not really suffice to tame a threat

☂ Over-defend. Apply defense-in-depth. "Failure of single security
control is a question of time, failure of security system is a question of
design"

☂ Note that this conflicts with the previous goal to not add too many
mitigations. Encourage good trade-offs that satisfy both concerns (ˮgood
enoughˮ security).

☂ Avoid undefined desired level of security (see above)

☂ Avoid All-acceptable bias in your risk rating (see above), because it will
systematically produce mitigation underkill.

📔 Definition of enough

✨⛈ 3.2.4 Arbitrary definition of enough

The process lacks a systematic approach how to evaluate if a set of
mitigations is good enough. The quality is highly dependent on threat
modeler decisions and skill. Mitigation overkill and mitigation underkill (see
above) occur on a regular basis.

☂ One approach: Apply the risk assessment scheme again, but with the
planned mitigations included. Check if the rating left MUST FIX / SHOULD
FIX.

☂ Another approach: Estimate protection provided by a mitigation and
calculate with risk decreasing factors. Check if the remaining risk is under
a certain threshold.

☂ Yet another approach: Let experts decide or review.

https://speakerdeck.com/vixentael/10-lines-of-encryption-1500-lines-of-key-management?slide=80
https://speakerdeck.com/vixentael/10-lines-of-encryption-1500-lines-of-key-management?slide=80
https://speakerdeck.com/vixentael/10-lines-of-encryption-1500-lines-of-key-management?slide=80
https://speakerdeck.com/vixentael/10-lines-of-encryption-1500-lines-of-key-management?slide=80
https://speakerdeck.com/vixentael/10-lines-of-encryption-1500-lines-of-key-management?slide=80

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 36

⛈ 3.2.5 Only satisfying the definition of enough

If there is a scheme that defines enough mitigation, this scheme may not
reward some mitigations even though they are useful. It may reward
inferior mitigations. Threat modelers choose weaker mitigations only to
satisfy the scheme.

☂ Analyze the weaknesses of your definition of enough. Compensate
these weaknesses.

☂ Donʼt forget to let threat modelers judge the remaining risk themselves.
Do not solely trust in a definition of enough.

📔 Coming up with mitigations

✨❓⛈ 3.2.6 Hard mitigation planning

Threat modelers have a hard time to come up with mitigations. Especially
newbies are overwhelmed.

☂ Help threat modelers understand risk and that it has a likelihood and
impact component to it. Consequently, there are likelihood reducer and
harm reducer mitigations. These can be explained figuratively as “bicycle
locksˮ and “bicycle helmets .ˮ

☂ Teach threat category systems like STRIDE together with a set of
standard mitigations that apply for each category. For certain threats,
thereʼs obvious default mitigation.

☂ Teach mitigations by example. As part of the training material, process
designers can provide threat modelers with a simple threat model of a
CRUD example app and present threats with a rich set of mitigation ideas.
This can also help demonstrate the ideas of mitigation overkill and
mitigation underkill (see above) and convey the idea that depending on the
desired level of security, different mitigation approaches can be chosen.

☂ Avoid small toolkit (see below)

☂ The OWASP Cheat Sheet Series has approachable advice how to do
things “the right way .ˮ

https://cheatsheetseries.owasp.org/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 37

☂ Comprehensive projects like MITRE CWE and MITRE ATT&CK have
mitigation suggestions.

…?

⛈ 3.2.7 Small toolkit / “If all you have is a hammer, everything looks like a
nailˮ

Threat modelers lack knowledge about advanced mitigations. They
choose bad or always the same mitigations that are not a good fit for the
threat.

☂ Threat modelers benefit from security education, so they come up with
good mitigations.

☂ Get familiar with the Explore VS Exploit Concept. If you havenʼt
explored much, explore, donʼt exploit yet.

☂ Get to know crypto and advanced mitigations, at least from a “whatʼs in
it for me?ˮ perspective

⛈ 3.2.8 Too much confidence in a particular mitigation

Threat modelers overestimate the protection that a particular mitigation
provides. In reality, itʼs easier to overcome the mitigation. The actual
protection is less than expected. This may result in a threat that is
inadequately mitigated. Threat modelers have a false sense of protection.

☂ See mitigation underkill mitigation above. Over-defend. Apply defense-
in-depth.

❓⛈ 3.2.9 Too little confidence in a particular mitigation

Threat modelers underestimate the protection that a particular mitigation
provides. The mitigation is not chosen in favor of a less adequate fit.
Example: Rejecting encryption because of misconceptions that it is
breakable. Vulnerable unencrypted system that solely relies on
authentication.)

…?

⛈ 3.2.10 Usability degradation

Suggested mitigations donʼt consider or damage usability.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 38

☂ Let threat modelers consider usability. Aim for solutions that are both
usable and secure.

☂ Consider adding usability threat modeling to the mix.

⛈ 3.2.10b] Lack of harm reduction

Threat modelers only plan mitigations that reduce likelihood, not harm.
The result is low likelihood disaster scenarios. When these scenarios
become real, customers face huge damage and major challenges in
incident response.

☂ Assume breach. Plan accordingly.

☂ Threat modelers should also unleash harm reduction. Examples include
encryption, anonymization, minimization of data stored, principle of least
privilege, detection and response controls, etc.

☂ Especially when a threat is high impact, low likelihood and not
sufficiently tamed, harm reduction is probably more promising than
reducing likelihood even more.

📔 Confusion

⛈ 3.2.11 Vague mitigation confusion

Threat modelers have an implicit, fuzzy and different understanding of
what kind of protection they expect from a mitigation. Example:
Introducing a “Loginˮ without discussing what kind of security level is
needed and what would make the login secure.)

☂ Specify mitigations with acceptance criteria. These need not be all the
implementation details, but the features they need to provide their security
guarantees.

✨⛈ 3.2.12 Mixing essentials with ideas

Essential mitigations that are required to tame a threat are mixed
undistinguishly with nice-to-have ideas that could be implemented some
day / maybe. Later on, essentials donʼt get the attention they deserve.
Ideas get more attention than they should.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 39

☂ Donʼt just show ideas how a threat could be tamed. Choose.

☂ Clearly distinguish essential required mitigations and ideas. Specify
how you denote both. Keep ideas separate from mitigations.

☂ Mark ideas as “someday / maybeˮ or “never .ˮ Choose wisely, if you
want to drop and delete them or document why you decided for something
else.

☂ Support the perception that essential mitigation is essential. This will
also help avoid undone mitigation (see below).

☂ Have (automatically updated) back-references to threats that help see
why a mitigation is needed.

📔 Uncompliance

⛈ 3.2.13 Uncompliance

Threat modelers may be satisfied with certain mitigations, but “deviating
from security and data management best practices, standards and
legislation .ˮ

☂ Know what rules apply for your system.

☂ LINDDUN has Uncompliance as itʼs own threat modeling category.

 🧩 Implement mitigations [3.3]

ℹ Praise of implementation / Why is this in-scope?

Threat modelers delegate the implementation to the usual development
process. Developers implement mitigations. This step is cruicial to actually
improving the security of the system.

“Guter Plan. Nix getan.ˮ (ˮGood plan. Nothing done.ˮ)

https://linddun.org/threat-types/#Nc

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 40

“Es gibt nichts Gutes. Es sei denn, man tut es!ˮ (ˮThere is no good, unless
you do it!ˮ)

For some people, threat modeling ends with the plan what to do. They would
not consider implementation as part of the threat modeling activity. Also,
depending on culture and process, threat modelers may not have the power to
influence what work is actually done.

Still, vendors as a whole have to provide implementation of threat modeling
mitigations and an effective integration of the processes.

Whatever view you prefer: Make sure, mitigations are implemented!

Watch this funny scene from Izar Tarandachʼs talk.

📔 Development process integration

⛈ 3.3.1 Split brain tracking

Mitigations are only listed in the threat model, and then forgotten. The
threat model is a second source of truth for scheduled work.

☂ Create issues for mitigations, like you track any other work that shall be
done

☂ Integrate processes and tools. Consider which responsibilities the issue
tracking system can deliver and what the threat model shall provide.

☂ Some people donʼt curate up-to-date threat model documents, but
operate threat modeling as a process that creates security issues.
Consider whether this is sufficient for you.

📔 Undone mitigation

⛈ 3.3.2 Security theater

https://www.youtube.com/watch?v=8nuuc5ny7bg&t=1975s

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 41

Lack of implementation leaves everyone thinking threat modeling is just
some fruitless talk.

☂ Create a strong urge for implementation!

☂ Remember: Implementation is all that connects threat modeling with
actual change to the product. Donʼt detach!

☂ Start to implement! Reduce ambitions, if that helps, and take action.
Don't plan comprehensively and forget to act (also known as ˮdeath by
planningˮ).

✨⛈ 3.3.3 Undone mitigation

A planned mitigation is not implemented. It canʼt be finished on time / for
the upcoming release. Vendors canʼt assume that an undone mitigation
protects the system from anything. The associated threats are untamed
and the system insecure.

☂ Have a trust-worthy development process that gets important issues
done in reasonable time.

☂ Plan for success and figure out what is needed to get mitigations done
by default.

☂ Avoid unfeasible / high effort mitigations (see above). Let developers
have a say in mitigation planning.

☂ Have clarity about which mitigations are essential and which ones are
nice-to-have. Decide about rules and follow them, how much known
insecurity you accept or if you wonʼt ship insecurity.

☂ When essential mitigations remains undone: Go back the the threat
model. Mark unfinished mitigations. Go back to the threats they were
trying to tame. Reconsider their mitigation. Maybe find a cheaper
mitigation set. Or release the product with some avoidance of that threat
(insecure features turned off). Or block the release and finish the
mitigation. Or accept the risk for now as a last resort.

☂ Let process designers consider and prepare for these scenarios.

⛈ 3.3.4 Undone mitigation unnoticed

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 42

System is accidentally released with undone mitigations.

☂ Install activities that assure undone mitigations will be noticed (early),
like a mandatory review of the mitigation issues before the release.

⛈ 3.3.5 Mitigation rotting

Mitigation issue rots underdone somewhere far down in the backlog
Undone mitigation.

Tanya Janca has a good video excerpt about this: Forgotten bugs - her #8
DevSecOps Worst Practice - “Donʼt worry, Tanya, itʼs in the backlogˮ

☂ Have a trust-worthy development process that wonʼt forget to finish
important issues.

☂ Establish a commitment how security issues are handled. Demand this
commitment.

☂ Tag mitigation issues / mark as important / mark high priority / assign
target version / assign due date - follow the usual agreed-upon practice of
your development process

☂ Let the issues link back to the mitigation in the threat model, so that it
can be seen that this an important required mitigation for one or more
threats. This discourages accidental degradation.

☂ Educate product owners, deciders and developers about the
importance to get them done

☂ Have someone who cares, observes and promotes on a regular basis.
Promote issues by reminding, advocating and raising awareness. Use the
agreed-upon commitments and markers and issue histories. Understand
how prioritization works and can be influenced. Buy cake or flowers if that
helps. 😉

☂ Celebrate successes.

☂ Monitor mitigation issues and their rank

☂ Donʼt mark unimportant stuff important.

⛈ 3.3.5b] Meaningless MUSTFIX markers MMM

https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=1316s
https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=1316s
https://www.youtube.com/watch?v=-ZxY2XlM3-0&t=1316s

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 43

The vendor has an agreed-upon scheme how important security work is
marked that was supposed to prevent Mitigation rotting. However,
everyone has become so used to ignoring these markers, that they donʼt
drive action. Mitigation rotting

☂ Donʼt install yet another “really really importantˮ tag.

☂ Refresh the commitment. Have someone who promotes.

☂ Start small and get something in movement…

⛈ 3.3.6 Mitigation closed

Mitigation issue is closed without the work being done Undone
mitigation.

☂ Have a trust-worthy development process that wonʼt close issues
without considering consequences.

☂ Monitor mitigation issues closed

☂ When an important issue is closed, come back to the threat model and
propose different mitigations. Or reopen the issue.

📔 Utility / Security balance

⛈ 3.3.7 Security eco flame

There is strong demand for feature implementation and little time/priority
for security, like implementing mitigation issues.

☂ Work on establishing a mindset that it is not “utility OR securityˮ - we
want to build awesome secure stuff, so a certain amount of security is
naturally part of the game!

☂ If threat modelers avoided mitigation overkill (see above), their
mitigations are sane. The links between mitigations and threats help justify
why mitigation implementation is important. This helps promote the
security work.

☂ Avoid undefined desired level of security (see above). When the
organization has committed to a certain level of security, threat modelers
can demand that commitment.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 44

⛈ 3.3.8 Feature eco flame

Mitigation implementation effort makes developers busy, so they canʼt
create other value

☂ Reach for “good enoughˮ solutions, avoid high effort mitigations (see
above)

☂ Avoid undefined desired level of security (see above). A clear
commitment can also help to avoid that security efforts are exaggerated.

📔 Quality assurance

⛈ 3.3.9 Mitigation implementation error

An implementation error causes a mitigation to be ineffective.

☂ Have a trust-worthy development process with quality assurance that
knows how to develop in a good quality.

☂ Example: Code Reviews. Tests.

☂ See mitigation underkill mitigation above. Apply defense-in-depth.
Donʼt rely on single security controls.

⛈ 3.3.10 Broken mitigation

A mitigation implementation breaks with later changes to the product.

☂ Have a trust-worthy development process with quality assurance that
assures important things donʼt break easily.

☂ Example: Have tests assert that your mitigation works. Execute them
with each build, before every release, or whatever makes sense.

☂ Conduct penetration tests.

 “Did we do a good (enough) job?ˮ Phase

 🧩 Review threat models and each threat [4.1]

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 45

🏗 TODO

 🧩 Track what is actually tamed [4.2]
🏗 TODO

 🧩 Judge remaining risk [4.3]
🏗 TODO

 🧩 Improve the process with lessons learned [4.4]

⛈ 4.4.1 Not reflecting

Threat modelers donʼt reflect They donʼt improve and get rid of their
blockers, inefficiencies and frustrations.

☂ Reflect. Do retros.

☂ Capture lessons learned - in terms of content, methodology and team
dynamics.

✨⛈ 4.4.2 Local learnings

Lessons learned are only available for a small team of threat modelers and
not shared across teams.

☂ Show successes and fails that help learn. Establish formats where this
sharing is possible.

☂ Update the process.

⛈ 4.4.3 Detached process design

Process designers are detached from threat modelers, so they donʼt
include their learnings in process improvement.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 46

☂ Let process designers watch and talk to threat modelers, so they see
where the process needs improvement.

☂ Consider having threat modelers join as process designers.

� Overarching aspects

� 🧩 Do collaborative knowledge work in teams with mixed skill
level [X.1]

ℹ This section was inspired by this insightful pre-release conversation about the
project at the OWASP #threat-modeling slack channel. Special thanks, Matt, AviD
and Kim!

Threat Modeling is a “team sport .ˮ A lot of threats to the social ecosystem arise
from people interacting with problematic traits. This section covers some of these
issues that are not special to threat modeling, but may have huge impact on
teams and outcomes.

✨⛈ X.1.1 Challenging traits in inter knowledge worker communication

Knowledge workers collaborating in teams show challenging
communication traits that damage the effectiveness, efficiency or
satisfaction of single or multiple gatherings.

Examples shown as pairs of opposites X 🆚 Y

⛈ Lonely riding
🆚⛈ Wanting to have everyone in the room

https://owasp.slack.com/archives/C1CS3C6AF/p1707122107792439
https://owasp.slack.com/archives/C1CS3C6AF/p1707122107792439
https://owasp.slack.com/archives/C1CS3C6AF/p1707122107792439

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 47

⛈ Dominating gatherings
🆚⛈ Not contributing

⛈ Feeling overly confident in own skill
🆚⛈ Believing you canʼt do anything

⛈ Aiming for perfection
🆚⛈ Acting too sloppy

⛈ Rushing
🆚⛈ Dowdling

⛈ Distracting (acting as the “rabbit hole rabbitˮ)
🆚⛈ Not allowing for insightful excursions

⛈ Being too much involved
🆚⛈ Not caring

⛈ Ignoring others
🆚⛈ Getting obsessed about what others might think

⛈ Fighting / Behaving overly aggressive
🆚⛈ Avoiding conflict / Not standing up for things that are important

⛈ Acting SOOO funny
🆚⛈ Never having fun, because the thing you do is SO serious

⛈ Suppressing feelings
🆚⛈ Letting emotions rule anything

⛈ Only following instructions with total lack of own initiative
🆚⛈ Being out of control

⛈ Talking meta all the time, forgetting to get things done
🆚⛈ Not talking meta and making the same mistakes over and over
again

☂ Take care of your team(s) and people. Resolve social conflicts.

☂ Meet in the middle. ⚖ Find the sweet spots.

☂ Test yourself: Which of these traits annoys you the most? You are
probably wearing the opposite one.

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 48

☂ Be careful to follow the “Stupid is who stupid doesˮ mantra: Itʼs easier
(and less painful) to fix an action youʼre doing wrong than fixing who you
are.

☂ Bring some tolerance. Weʼre only humans, after all.

⛈ X.1.2 Challenging traits in learning and interactions with different
expertise

Collaborating with mixed skill levels, learning and mentor-mentee
relationships sometimes show traits that damage the effectiveness,
efficiency or satisfaction of learning and performance.

Examples shown as pairs of opposites X 🆚 Y

⛈ Not taking into account that people are new and have to learn and
grow
🆚⛈ Treating people like newcomers when they have long outgrown it

⛈ Not taking the time to learn (because you are SO busy performing
inefficiently)
🆚⛈ Forgetting to perform because you learn all the time and certainly
need that one more thing

⛈ Worshiping a guru or mentor and not using your own brain
🆚⛈ Not taking advice and inspiration from more experienced people

⛈ Experienced people ruling the activity, while newbies are residing in
spectator mode
🆚⛈ Experienced people denying to contribute, because they want
newbies to grow all the time

⛈ Mentors who solve mentees problems when they should better be
empowering
🆚⛈ Mentors who donʼt help hands-on when mentees are obviously
lost and stuck

⛈ Mentees who donʼt ask for help
🆚⛈ Mentees who donʼt dare to do anything on their own

⛈ Not leaving people alone, always wanting to take part in
discussions

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 49

🆚⛈ Being absent and unavailable when people really need you

☂ Foster a learning and feedback culture.

☂ Take into account that people need to learn. Plan how this can be best
supported.

☂ As a person involved, know your position and your role in the social
structure.

☂ Resolve social conflicts in mentor-mentee relationships. Reflect about
the learning experience.

☂ Meet in the middle. ⚖ Find the sweet spots.

☂ Jeevan Singh The Future of Application Security Engineers has good
insights how AppSec experts can empower, unleash and then leave alone.

� 🧩 Communicate among threat modelers [X.2]

🏗 TODO this section is under construction and only has some ideas.

❓ What is really special about inter threat modeler communication and not
already covered by the content sections?

⛈ “Resistance is futileˮ misconception - see 0.2.2

⛈ “Wonʼt happen to usˮ / “Weʼre invulnerableˮ misconception - see 0.2.3

❓⛈ X.2.? Defending against the devil 😈 👾 �

Threat modelers may have naive conceptions about attackers. Different
concepts of attackers come with different conceptual baggage. For
example, attackers may be framed as evil outside others. In reality,
attackers are humans too, they may be insiders, they have their own
motivations which are comprehensible from their perspective and may not
attack for the sake of defeating humanity.

https://www.youtube.com/watch?v=2Gp0TxZQm3I&t=1036s
https://www.youtube.com/watch?v=w8KY0vxI8kA

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 50

…?

❓⛈ X.2.? Asking to “Think like an attackerˮ

Asking to “Think like an attackerˮ is advice that inexperienced threat
modelers may not be able to follow. They have never met attackers. Nor do
they know how they attack or what inspires their actions.

…?

❓⛈ X.2.? Escaping into “One fine day → big rewrite / new product →
awesome securityˮ fantasies

Threat modelers or developers sometimes dream of a big rewrite or new
product that will someday have awesome security. This deters from small
incremental improvements to the current system.

❓⛈ X.2.? Nothing else matters security

Security people sometimes exaggerate their focus on security and forget
that vendors also have to provide utility and that not everybody was hired
to secure things.

❓⛈ X.2.? “No known previous incident = secureˮ misconception

…

� Thanks
I want to thank all the lovely people who inspired this document and gave
feedback!

Thanks, Axel, for the first kick-off and the learnings about program design and
risk!

Thanks, Chris and Robert, for the trust to talk about this in the Application Security
Podcast when the project was growing.

Thanks, Izar and Kim, for your support, review and feedback!

https://www.youtube.com/c/applicationsecuritypodcast/videos
https://www.youtube.com/c/applicationsecuritypodcast/videos
https://www.youtube.com/c/applicationsecuritypodcast/videos

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 51

Thanks, Matt, AviD and Kim, for your inspiration about the social challenges!

Thanks, Irene, for your feedback about threat modeling a “giantˮ!

Thanks, Matt, for your feedback about the diagram!

Thanks, Adam, for thought-provoking impulse how implementation is related to
threat modeling!

Thanks, everyone who contributed in the insightful pre-release conversation
about the project at the OWASP #threat-modeling slack channel.

This document contains so many learnings I collected along the way when I
improved my threat modeling skills and teached at VISUS Health IT GmbH. I can
not thank everyone who had their part in this, because it is just so many
occasions. Thanks, especially, Axel, Andreas, Fabian, Daniel, Patrick, Luise,
Hannah, Marc, Peter!

💬 Call for Feedback

This document embraces the mindset of incremental improvement.

If you have any feedback, please let me know!

What are the Threat Modeling threats you experience as most challenging?

Do you have any better suggestions for mitigations?

Please get in touch:

https://hendrik.ewerlin.com/security/

EMail: hendrik@ewerlin.com

LinkedIn: Hendrik Ewerlin | LinkedIn

https://owasp.slack.com/archives/C1CS3C6AF/p1707122107792439
https://owasp.slack.com/archives/C1CS3C6AF/p1707122107792439
https://owasp.slack.com/archives/C1CS3C6AF/p1707122107792439
https://www.visus.com/
https://hendrik.ewerlin.com/security/
https://www.linkedin.com/in/hendrik-ewerlin-51863b67/

⛈☂(⛈☂ Threat Modeling of Threat Modeling #meta, V 1.1.0 52

OWASP Slack: https://owasp.slack.com/team/U05EH9V9UG1

Threat Modeling Connect Community:
https://www.threatmodelingconnect.com/members/hewerlin-914

https://hendrik.ewerlin.com/security/

https://owasp.slack.com/team/U05EH9V9UG1
https://www.threatmodelingconnect.com/members/hewerlin-914
https://hendrik.ewerlin.com/security/

